Human lactotransferrin: Molecular, functional and evolutionary comparisons with human serum transferrin and hen ovotransferrin¹

J. Mazurier, M.-H. Metz-Boutigue, J. Jollès, G. Spik, J. Montreuil and P. Jollès²

Laboratoire de Chimie Biologique et Laboratoire Associé au CNRS, Université des Sciences et Techniques de Lille-I, F-59655 Villeneuve d'Ascq Cedex (France), and Laboratoire des Protéines, Université de Paris V, 45 rue des Saints-Pères, F-75270 Paris Cedex 06(France), August 2, 1982

Summary. In this review article, human lactotransferrin is compared to human serum transferrin and hen ovotransferrin. For the first time the possibility of a 6-fold internal homology of the transferrins is raised: a scheme in which 6 domains are defined is reported; two of them with the highest homology seem to be implicated in the 2 iron binding sites of each transferrin. The location of the disulfide bridges of the 3 transferrins and of their prosthetic sugar groups is discussed: some not yet described half-cystine containing lactotransferrin peptides are indicated.

Transferrins constitute a family of homologous glycoproteins present in all vertebrate species. They consist of a single polypeptide chain of molecular weight close to 80,000 to which one or two carbohydrate groups are attached^{5,25}. They also possess 2 metal binding sites each of which can bind a ferric ion (Fe³⁺) together with a bicarbonate anion. The delivery of iron from transferrin to cells is mediated by the binding of transferrin —Fe³⁺ complexes to specific cellular receptors^{11,15}. Transferrins are primarily found in the sera of all vertebrates (serum transferrins), in bird egg-whites (ovotransferrins) and in almost all mammelian milks (lactoferrins or lactotrans-

ferrins). The complete amino acid sequences of human serum transferrin¹⁹ (678 residues) and hen ovotransferrin (686 residues)^{16,34} have been reported quite recently. Our group is currently involved in studies concerning human lactotransferrin and has described 75% of its sequence^{23,24}. Lactotransferrin as well as serum transferrin and ovotransferrin present an internal homology^{4,16,18,21,34}. Crystallographic¹⁴ and partial proteolysis³² experiments demonstrated that each half of the chain folds up into a largely independent compact domain (or lobe) which carries a specific metal binding site and it can be inferred that the disulfide bridges are located within the

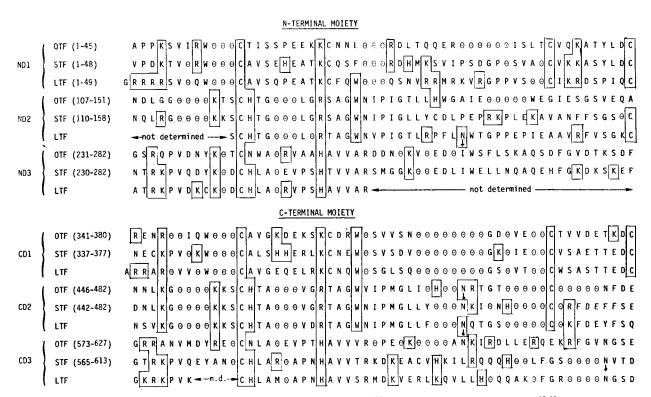


Figure 1. Suggested 6-fold internal homology of hen ovotransferrin $(OTF)^{16,34}$, human serum transferrin $(STF)^{18,19}$ and human lactotransferrin $(LTF)^{23,24}$. 6 domains ND1 to ND3 and CD1 to CD3 are indicated. The important homologous residues (half-cystines, tryptophans and basic amino acids) are boxed (\Box) ; θ , deletion; the 1-letter amino acid abbreviation system is used; N, carbohydrate carrying asparagine residue.

Half-cystines of the N-terminal moiety of the 3 transferrins Disulfide bridge (No., see fig. 4) Half-cystine Transferrin Sequence residue number RWCTIS OTF 10 SI. LTF RWCAVS 1N QWCAVS 24 10 KKCNNLRD OTF 20 Si. TKCQSFRD 19 2N тксгоноѕ 20 24 ISLITCVOK PSVACVKK PPVSCIKR OTF 36 STF 39 2N LTF 40 24 LDCIKAIA OTF 45 STF 48 LDCIRAIA 1N LTF 49 IQCIQAIA 24 115 SCHTGLGR DTF STF SCHTGLGR 118 3N l LTF S C H T G L R T 24 FFSASCVP OTF 160 STF FFSGSCAP 4 N LTF 158 FYSEKCYP OTF EQKLCR 171 { _{STF} FPQLCQ 171 5N LTF FPNLCR QCKG LCPG OTF 174 STF 174 4N LTF not determined KCARNAPYSGYS OTF 182 GCSTLDEYFGYS STF 5N 179 LTE not determined FHCLK OTF 197 STF 194 FKCLK LTF not determined OTF ELLCLDGSR 228 ELLC LONTR ELLC POATR STF 227 6N LTF OTF T C N. W A R 242 STF LTF DCHLAE 241

Additional half-cystines of STF and LTF

DCHLAR

24

Transferri	Half-cystine n residue number	Sequence	Refer- ences	Disulfide bridge (No., see fig.4)
STF OTF LTF	137 (C) 134 (H) (P)	I P I G L L Y C D L P I P I G T L L H W G A V P I G T L R P F L N	24	10N
STF OTF LTF	161 (C) 163 (G) (G)	APCADG T DF V P G A T 1 E Q K V P G A D K G Q F	*	11N
STF OTF LTF	177 (C) 177 (D) (X)	PGCG KGDP IGXX	24	11N
STF OTF LTF	331 (C) 336 (L)	N L REST CPEA SMRKDQLTPS not determined		10N
$\begin{cases} \text{STF} \\ \text{OTF} \\ \text{LTF} \end{cases}$	339 (C) 343 (N) (A)	NECKPV RENRIO RRARVV	24	120
STF OTF LTF	595 (C) 603 (K) (L)	EACVHKIL ANKIRDLL ERLKQVLL	24	12C
STF OTF LTF	614,619(C) 622(K)627(E) (C)	K S K F M M F E S Q S D C P D K F C L F	24	130
STF OTF	(C) 238 (Y) 239 (Y)	K P V D K C K K P V Q D Y K Q P V D N Y K	24	14N

Half-cystines of the C-terminal moiety of the 3 transferrins

348 348 358 355 371 368 380 377 405 402 418 454 450 478 474	I Q W C A V G K D E V K W C A L S H H E V V W C A V G E Q E K S K C D R W S V R L K C N E W S V I E C V S A V T C W S A V T C W S A T K D C I I T E D C I A T E D C I A A G V C G L V A G K C G L V A G K C G L V C C S K T D E R P A S Y O C E Q T P A D G T F A N C V D R P V E G Y L A G K K S C H T G K K S C H T G K K S C H T G K K S C H T G S C K F D S E G C A P S E G C A P	24 24 24 24 24 24	10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10
345 358 355 371 368 380 377 405 402 411 418 450	V K W C A L S H H E V V W C A V G E Q E K S K C D R W S V R L K C N G W S V L R K C N Q W S G V E C T V V I E C V S A V T C W S A T K D C I I T E D C I A T E D C I A A G V C G L V A G K C G L V A G K C G L V C C E Q T F A D G T F A N C V D R P V E G Y L A G K K S C H T G K K S C H T G K K S C H T G K K S C H T G K K S C H P S E G C A P S E G C A P	24 24 24 24	2C 2C 9C 3C
358 355 371 368 380 377 405 402 411 418 450	V V W C A V G E Q E K S K C D R W S V R L K C N E W S V L R K C N Q W S G V E C T V V I E C V S A V T C W S A T K D C I I T E D C I A A G V C G L V A G K C G L V A G K C G L V C S K T D E R P A S Y O C E Q T P A D G T F A N C V D R P V E G Y L A G K K S C H T G K K S C H T G K K S C H T G K K S C H T G S C K F D S E G C A P S E G C A P	24 24 24 24	2C 2C 9C 3C
355 371 368 380 377 405 402 421 4418 450 478 474	RLKCNEWSW LRKCNOWSG VECTVV IECVISA VTCWSA TKOCII TEDCIA AGVCGLV AGKCGLV AGKCGLV CCEQTFFAOGYFA NCVDRPVEGYLA GKKSCHT GKKSCHT GKKSCHT GKKSCHT GKKSCHT SEGCAP SEGCAP	24 24 24 24	2C 1C 9C 8C
871 868 880 877 405 402 4121 418 454 450	LRKCNQWSG VECTVV IECVISA VITCWSA TKOCII TEDCIA AGVCGLV AGKCGLV AGKCGLV CCSKTDERPASY OCEQTPAOGYFA NCVDRPVEGYLA GKKSCHT GKKSCHT GKKSCHT GKKSCHT SEGCAP SEGCAP	24 24 24 24	2C 1C 9C 8C
3868 380 377 405 402 421 418 454 450	V E C T V V I E C V S A V T C M S A T K D C I I T E D C I A A G V C G L V A G K C G L V Q C S K T D E R P A S Y O C E Q T P A D G Y F A N C V D R P V E G Y L A G K K S C H T G K K S C H T G K K S C H T G K K S C H T G K K S C H T G K K S C H T G K K S C H T G K K S C H T G K K S C H T G K K S C H T G S C K F D S E G C A P S E G C A P	24 24 24 24	1C 9C 8C
3868 380 377 405 402 421 418 454 450	IECVSA VTCWSA TKOCII TEDCIA AGVCGLV AGKCGLV AGKCGLV CCEQTFFAOGTFA NCVDRPVEGYLA GKKSCHT	24 24 24	1C 9C 8C
3880 377 405 402 421 418 454 450	TKOCII TEOCIA TEOCIA AGVCGLV AGKCGLV AGKCGLV CCSKTDERPASY OCEQTPAOGYFA NCVDRPVEGYLA GKKSCHT GKKSCHT GKKSCHT GKKSCHT GKKSCHT GKKSCHT SEGCAP SEGCAP	24 24 24	1C 9C 8C
377 405 402 421 418 454 450 478 474	TEDCIA TEDCIA A G V C G L V A G K C G L V A G K C G L V C C C C C C C C C C C C C C C C C C C	24 24 24	9C 8C 3C
405 402 421 418 454 450 478 474	A G V C G L V A G K C G L V A G K C G L V Q C S K T D E R P A S Y O C E Q T P A D G Y F A N C V D R P V E G Y L A G K K S C H T G K K S C H T G K K S C H T G K K S C H T G K K S C H T S C K F D S E G C A P S E G C A P	24	9C 8C 3C
402 421 418 454 450 478 474	A G V C G L V A G K C G L V A G K C G L V Q C S K T D E R P A S Y O C E Q T P A D G T F A N C V D R P V E G V L A G K K S C H T G K K S C H T G K K S C H T G K K S C H T S K K S C H T S K C F D S E G C A P S E G C A P	24	3C 8C
402 421 418 454 450 478 474	A G K C G L V A G K C G L V Q C S K T D E R P A S Y O C E Q T P A D G T F A N C V D R P V E G Y L A G K K S C H T G K K S C H T G K K S C H T G K K S C H T G T C N F D N H C R F D S E G C A P S E G C A P	24	3C 8C
121 418 454 450 478 474	A G K C G L V Q C S K T D E R P A S Y O C E Q T P A D G T F A N C V D R P V E G Y L A G K K S C H T G K K S C H T G K K S C H T G K K S C H T G T C N F D N H C R F D S E G C A P S E G C A P	24	3C 8C
418 454 450 478 474	QCSKTDERPASY OCEQUIPADGYFA NCVDRPVEGYLA GKKSCHT GKKSCHT GKKSCHT GKKSCHT GKKSCHT GKKSCHT SCKCFD SEGCAP	24	3C
418 454 450 478 474	OCEQTPADGFA NCVDRPVEGYLA GKKSCHT GKKSCHT GKKSCHT GTCNFD NHCRFD GSCKFD SEGCAP SEGCAP	24	3C
454 450 478 474	NCVDRPVEGVLA GKKSCHT GKKSCHT GKKSCHT GTCNFD NHCRFD GSCKFD SEGCAP SEGCAP	24	3C
450 478 474 488	GKKSCHT GKKSCHT GKKSCHT GTCNFD NHCRFD GSCKFD SEGCAP SEGCAP	24	
450 478 474 488	G K K S C H T G K K S C H T G T C N F D N H C R F D G S C K F D S E G C A P S E G C A P		
478 474 488	G K K S C H T G T C N F D N H C R F D G S C K F D S E G C A P S E G C A P		
474 488	N H C R F D G S C K F D S E G C A P S E G C A P	24	70
488	G S C K F D S E G C A P S E G C A P	24	70
	S E G C A P S E G C A P	24	
	SEGCAP		
184	I		
			4C
	SQSCAP	24	
199	PPNSRLCQL		
495	K K D S S L C K L D P R S N L C A L	24	5C
		24	
502	1 1 1 1		4.5
498	 	24	4C
513		יב ה	
			5C
	not determined	4	••
530	LRCLVE		
523	FRCLVE		3C
	FRCLAE	*	
570	LCTDGR		
562	LCLDGT		6C
		*	
584			
576	□ '		6 C
642		24	
	1 1 1 1		ar
030	111 :	23	8C
671			
	\ \ -' \- 		7C
7	LRKCST	23	. •
680	ILQMCSFL	•	
673	LLEACTFR		9C
	LLEACEFL	23	
	998 513 550 530 530 530 530 562 562 564 564 564 566 571 564	L C M G S G L C (G X X S13	L C M G S G L C T G X X 24 S13

Half-cystine containing sequences of hen ovotransferrin (OTF)^{16,34}, human serum transferrin (STF)^{18,19} and human lactotransferrin (LTF)^{23,24}. The homologous residues are boxed: □, identical residues; □, conservative changes. The 1-letter amino acid abbreviation system is used. Ŋ, carbohydrate carrying asparagine residue. asparagine residue.

domains, none passing between them. The transferrin gene seems thus to have evolved from an ancestral gene¹⁸ by duplication. The latter could be itself the product of a more ancient duplication: indeed, a weak 4-fold homology was observed in serum transferrin, suggesting that the molecule evolved from a protein of ½ of its present size¹⁸.

In the course of our sequence studies devoted to human lactotransferrin, we raised for the first time the possibility of a 6-fold internal homology²⁴. In the present paper we develop this hypothesis and propose that not only lactotransferrin but also serum transferrin and ovotransferrin can be organized into 6 domains. A comparative study of the 3 transferrins will then include sequence data and the localization of the half-cystine residues or disulfide bridges as well as of some biologically important amino acids, more particularly those involved in metal- or carbohydrate binding sites.

1. Characterization of 6 domains (hexaplication) in the transferrins and sequence comparisons

As our series of studies on human lactotransferrin proceeded, we became aware of a 6-fold occurrence of quite basic areas: the first one is situated at the N-terminal end of lactotransferrin and the others follow rather regularly roughly at every 110th amino acid residue. Thus, beside the previously demonstrated internal homology and the observation of a weak 4-fold homology, we propose now a 6-fold internal homology, suggesting that the molecule evolved from a protein of \(\frac{1}{6} \) of its present size. Lactotransferrin can be organized into 6 domains distributed 3 by 3 in the N-terminal (ND1 to ND3 domains) and C-terminal (CD1 to CD3 domains) moieties of the molecule. This 6-fold internal homology is exemplified in figure 1: not only the occurrence of rather basic N-terminal sequences for each domain but also the alignment of half-cystine, tryptophan and basic amino acid residues should, in particular, be pointed out.

The organization into 6 domains could be extended to human serum transferrin and hen ovotransferrin as also indicated in figure 1: each domain contains, again, 110±10 amino acid residues and the 6 domains of the 3 transferrins present many structural homologies (fig. 1).

2. Comparative study of the half-cystine residues of the 3 transferrins

When the nature of the amino acids conserved between the 6 domains of the 3 transferrins is analyzed, a large proportion appears to be of potential structural significance, such as the half-cystines, possibly reflecting the preservation of a similar 3-dimensional structure in the domains; indeed in the transferrins studied so far no cysteines occur: they are thus all involved in disulfide bonds.

Hen ovotransferrin possesses the smallest number of half-cystines (30 residues)^{16,34}; 12 of them are situated in the N-terminal and 18 in the C-terminal moiety of the molecule (fig.2). However, only 10 out of the 15 possible disulfide bond arrangements have been directly characterized thus far^{13,34}; the remaining disulfide bonds must still be investigated. In human serum transferrin which contains 38 half-cystines¹⁹ (fig.2), 16 are found in the N-terminal moiety and 22 in the C-terminal one; here again the location of only 6 disulfide bonds out of 19 has been specified^{9,19}. Human lactotransferrin, according to our sequence studies, contains at least 34 half-cystines^{23,24}.

In the 3 transferrins, the half-cystine residues are not randomly distributed; most of them are situated in quite homologous positions, even when the subdivision into 3 N-terminal and 3 C-terminal domains is considered. This is particularly true for the 30 halfcystines characterized in ovotransferrin which are found in homologous areas in serum- and lactotransferrins (table). The following disulfide bonds have been demonstrated in the domains a) of ovotransfer $rin^{13,34}$: 1 in ND1; 3, 4 and 5 in ND2; 6 joining ND2 and ND3; 1 in CD1; 3 in CD2; 7 and 8 joining CD1 and CD3; 9 joining CD2 and CD3; b) of serum transferrin^{9,19}: 1 and 2 in ND1; 3 in ND2; 6 and 10 joining ND2 and ND3; 12 joining CD1 and CD3. These results as well as the internal homology detected in each transferrin and the close homologies established between the 3 transferrins suggest that the following 15 disulfide bonds seem to be conserved in the 3 molecules: 1N and 2N in ND1; 3N, 4N, 5N in ND2; 6N joining ND2 and ND3; 1C and 2C in CD1; 3C, 4C, 5C in CD2; 6C and 9C joining CD2 and CD3; 7C and 8C joining CD1 and CD3 (fig. 2).

Human serum transferrin contains 8 additional half-cystines when compared to ovotransferrin: 4 are located in the N-terminal moiety of the molecule (Cys-137, 161, 177 and 331) and 4 in the C-terminal moiety (Cys-339, 495, 614 and 619). These 8 half-cystines might correspond to 4 additional disulfide bonds: 10N which joins domains ND2 and ND3; 11N situated in the domain ND2 and probably contributes to its stabilization; 12C joining domains CD1 and CD3 and contributing to transform the C-terminal moiety into a rather compact region; 13 situated in the domain CD3.

At the present stage of our study, 4 additional half-cystines occur in lactotransferrin instead of 8 in serum transferrin when compared to ovotransferrin; they might correspond to 2 cystine bonds: one seems homologous to bond 13C of serum transferrin (fig. 2). The additional disulfide bonds 10N, 11N and 12C of serum transferrin when compared to ovotransferrin do not have a counterpart in lactotransferrin.

3. Localization of the amino acids involved in the iron binding sites

If some conserved residues of the transferrins might have a structural significance, some others can be expected to have a functional one. The stereochemical restrictions on the arrangements of liganding groups in the iron binding sites would result in a conservation of the residues involved in these binding sites. It is generally thought that each iron binding site contains 3 tyrosyl^{3,31}, 2 histidyl^{17,20} and also tryptophan³⁰ residues; the concomitantly bound bicarbonate anion²⁹ may be held electrostatically to an arginyl side group²⁷.

Which domain(s) fulfilled these requirements? Taking into account once more the internal homology and the homologies between the 3 transferrins, it was possible to eliminate domains ND1/CD1 and ND3/CD3: indeed in the first 2, only 2 conserved tyrosines and 1 conserved tryptophan were characterized; in the 2 other domains the conserved residues included only 1 tyrosine, 1 histidine and 2 arginine residues. The 2 homologous domains ND2 and CD2, however, can be considered as serious candidates for the 2 iron

binding sites; each of them possesses the following conserved residues (fig. 3): 2 tyrosines, 1 tryptophan, 1 histidine and 1 arginine. In the scheme similar to that proposed by Williams et al.³⁴ for hen ovotransferrin, we indicate (fig.4) the 6 domains which we characterized in lacto- and other transferrins, and more particularly the ND2 and CD2 domains: they can clearly be defined by the occurrence of disulfide bonds 3N and 3C and the 5 above mentioned conserved amino acids are thus brought together. Not only the primary but also the secondary structures of this area of the 3 transferrins present a high degree of homology: the 3rd conserved tyrosine residue implicated in the iron binding site might be situated in the D1 domain and is in fact, according to the secondary structure, in close contact with the other important residues. The same observation could be made with respect to the 2nd conserved histidine residue situated in the D3 domain.

4. Localization of the glycans in the transferrins

It is well known that the tripeptide Asn-X-Thr/Ser²⁶ represents the code sequence for N-glycosidically

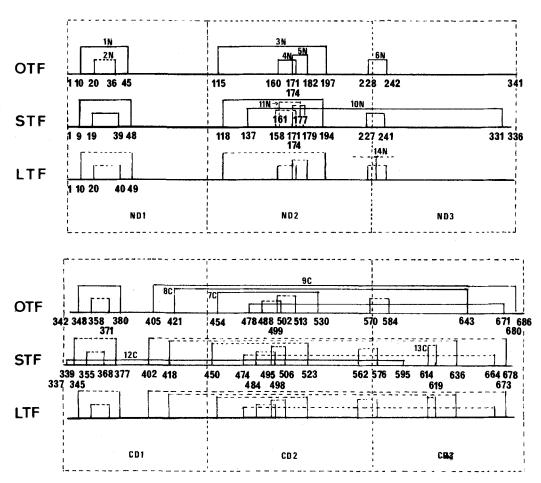


Figure 2. Diagram of the half-cystine positions of 3 transferrins: OTF^{16,34}, STF^{18,19} and LTF^{23,24}. Not yet determined disulfide bridges are indicated by dashed lines. The 6 transferrin domains are termed ND1 to ND3 and CD1 to CD3.

linked sugar groups. An investigation concerning the occurrence of this tripeptide in each domain of the 3 transferrins was carried out. In hen ovotransferrin one code sequence was located in the CD2 domain and 2 others in the CD3 domain, but only the former was glycosylated (fig.4). In human lactotransferrin, 4 code sequences were characterized in the domains ND2, CD1, CD2 and CD3. According to our sequence studies, only 2 of them situated in the domains ND2 and CD2 were glycosylated (fig.4). Human serum transferrin contained 2 code sequences in the domains CD2 and CD3: both of them were glycosylated (fig.4). The carbohydrate-carrying asparagine residue of the code sequence is generally located in a special conformation called β -turn^{6,7} and in a hydrophobic

environment⁸. The secondary structures and the hydrophobicities of the areas surrounding the above mentioned 4 non-glycosylated tripeptides Asn-X-Ser/Thr have been established. There is a high probability that the asparagine residue of the tripeptide of lactotransferrin situated in the CD3 domain and asparagine 618 of ovotransferrin are in a β -turn conformation and the remaining secondary structure of the surrounding sequences is identical to the homologous region of serum transferrin²³ where the asparagine is glycosylated. The absence of glycosylation of the second asparagine residue of ovotransferrin situated in the CD3 domain (Asn 678) can be explained by the presence of a proline residue between the asparagine and serine residues²⁸. Finally the asparagine residue

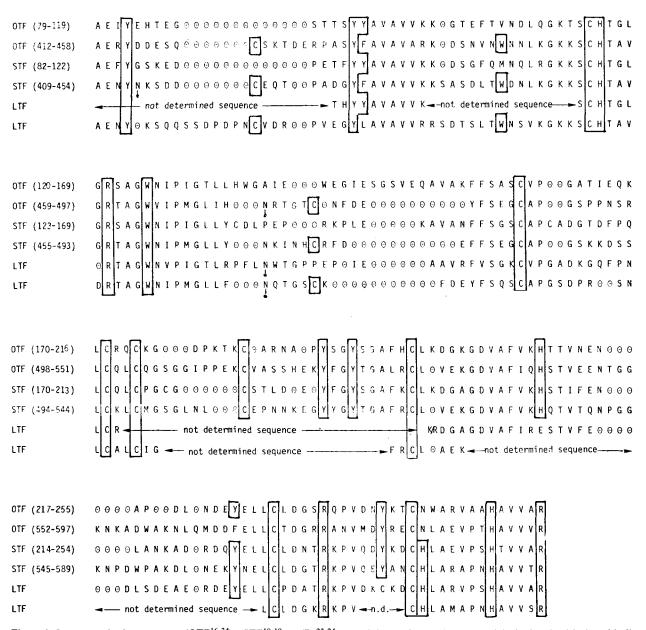


Figure 3. Long transferrin sequences (OTF^{16,34}), (STF^{18,19}), (LTF^{23,24}) containing amino acids which might be involved in iron binding sites: these residues are boxed. θ , deletion; N, carbohydrate carrying asparagine residue.

of lactotransferrin encountered in the CD1 domain is situated in a sequence whose probability to adopt a β -turn is too low¹⁰.

These results demonstrate that the glycans are preferentially found in the domains ND2, CD2 and CD3. The CD3 domain of the 3 transferrins contains the code sequence but only in human serum transferrin the tripeptide is glycosylated.

Discussion

The results discussed in this article and most particularly in the 1st and 3rd parts favor the existence of 6 homologous domains (hexaplication) in transferrins; the possibility exists that the 6-segment structure might have been generated by a series of duplications of an ancestral 110-residues unit; a possible candidate for this ancestral 110-residues unit might be the metal-carrying domain ND2 (or CD2) which is the one most conserved. Homology between domains ND2 and CD2 of ovo- and serum transferrins is around 70% and drops to around 40% between ND1 and CD1 or ND3 and CD3. Quite recently it has been reported 12 that a ribosomal protein, the 557-residues long S1 fraction from *E. coli*, is also made up of

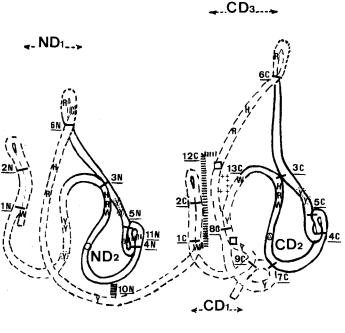


Figure 4. A transferrin molecule model for LTF, STF, OTF with disulfide bridges (1 to 13)³⁴, location of the 6 domains (ND1 to ND3 and CD1 to CD3) and indication of the conserved residues which might be implicated in the iron binding site(s); the 1-letter amino acid abbreviation system is used: R, arginine; H, histidine; W, tryptophan; Y, tyrosine; \overline{Y}_{0} , not yet determined tyrosine; [C], half-cystine residue located only in lactotransferrin. O, \Box , \triangle , carbohydrate-carrying asparagine residue in LTF²⁴, STF¹⁸, OTF³⁴, respectively. ///, disulfide bridges present only in serum transferrin; + + +, disulfide bridges present in serum transferrin and lactotransferrin.

_ND3______

6 homologous segments, each of which is approximately 88 residues in length; it has further been claimed that the fundamental repeat unit in the S1 protein can be reduced to 44 residues; in the transferrins it does not seem possible to reduce the 110-residues unit.

Further data emerging from this study permit a more precise definition of some other current problems in the transferrin field - particularly those concerning the metal binding areas. We have inferred that the conserved residues, among them the tyrosine, histidine, arginine and tryptophan residues of the D2 domains, might be involved in iron binding sites. More particularly, 2 of the 3 tyrosyl residues implicated in each binding site belonged to ND2 and CD2 domains when the third was located in D1 domains. Recently, after chemical modification of the tyrosines of iron saturated hen ovotransferrin by nitration with tetranitromethane, Williams³³ identified 8 protected tyrosine residues implicated in metal binding sites: 2 of them were present in D2 domains and the 2 others in D1 domains: this result was in accordance with our data mentioned above. Furthermore we recently established a structural relatedness between human ceruloplasmin²². lactotransferrin and human Sequences homologous to those containing the copper-binding sites in Pseudomonas aeruginosa azurin, Anabaena variabilis plastocyanin and probably ceruloplasmin were characterized in the transferrins: they were situated in the ND3 and CD3 domains; thus the copper and iron binding sites seemed to be located in different parts of the transferrin molecules.

- Acknowledgments. This research was supported by the CNRS (ER No.102 and LA No.217) and the INSERM (Unité U-116).
- 2 Reprint requests to P.J., Laboratoire des Protéines, Université de Paris V, 45 rue des Saints-Pères, F-75270 Paris Cedex 06 (France).
- 3 Aasa, R., and Aisen, P., An electron paramagnetic resonance study of the iron and copper complexes of transferrin. J. biol. Chem. 243 (1968) 2399-2404.
- 4 Abernethy, J. L., De Preter, J., and Prieels, J.P., Evidence for an internal homology in human lactotransferrin structure. Archs int. Physiol. Biochim. 88 (1980) 1B12-1B13.
- 5 Aisen, P., The transferrins, in: Iron and biochemistry and medicine, pp.87-129. Eds A. Jacobs and M. Worwood. Academic Press, London and New-York 1980.
- 6 Aubert, J.P., Biserte, G., and Loucheux-Lefebvre, M.H., Carbohydrate-peptide linkage in glycoproteins. Archs Biochem. Biophys. 175 (1976) 410-418.
- 7 Beeley, J. G., Location of the carbohydrate groups of ovomucord. Biochem. J. 159 (1976) 335-345.
- 8 Beeley, J.G., Evolution of the carbohydrate acceptor sequences in avian ovomucoïd, in: Glycoconjugates, pp. 712-713. Eds R. Schauer, P. Boer, E. Buddecke, M.F. Kramer, J.F.G. Vliegenthart and H. Wiegandt. GT. Publ., Stuttgart 1979.
- 9 Brune, J.E.L., Martin, S.R., Boyd, B.S., Palmour, R.M., and Sutton, H.E., Human transferrin C: the sequence and cystine bridges of the N-terminal region. Tex. Rep. Biol. Med. V36 (1978) 47-61.
- 10 Chou, P.Y., and Fasman, G.D., Prediction of protein conformation. Biochemistry 13 (1977) 222-245.

- 11 Cox, T.M., Mazurier, J., Spik, G., Montreuil, J., and Peters, T.J., Iron binding proteins and influx of iron across the duodenal brush border. Evidence for specific lactotransferrin receptor in the human intestine. Biochim. biophys. Acta 588 (1979) 120-128.
- Doolittle, R.F., Woodbury, N.W., and Jue, R.A., Ribosomal protein S1 is the product of a serie of contiguous duplications. Biosc. Rep. 2 (1982) 405-412.
- 13 Elleman, T. C., and Williams, J., The amino acid sequences of cysteic acid-containing peptides from performic acid-oxidized ovotransferrin. Biochem. J. 116 (1970) 515-535.
- 14 Gorinsky, B., Horsburgh, C., Lindley, P.F., Moss, D.S., Par-kar, M., and Watson, J.L., Evidence for the bilobal nature of differic rabbit plasma transferrin. Nature 281 (1978) 157-158.
- 15 Jandl, J.H., Imman, J.K., Simmons, R.L., and Allen, D.W., Transfer of iron from serum iron-binding protein to human reticulocytes. J. clin. Invest. 38 (1959) 161-185.
- 16 Jeltsch, J.M., and Chambon, P., The complete nucleotide sequence of the chicken ovotransferrin mRNA. Eur. J. Biochem. 122 (1982) 291-295.
- 17 Krysteva, M., Mazurier, J., Spik, G., and Montreuil, J., Comparative study on histidine modification by diethylpyrocarbonate in human serotransferrin and lactotransferrin. FEBS Lett. 56 (1975) 337-340.
- 18 McGillivray, R.T.A., Mendez, E., and Brew, K., Structure and evolution of serum transferrin, in: Proteins of iron metabolism, pp. 133-141. Eds E.B. Brown, P. Aisen, J. Fielding, and R.R. Crichton. Grune and Stratton, New York 1977.
- 19 McGillivray, R.T.A., Mendez, E., Sinha, S.K., Sutton, M.R., Lineback-Zins, J., and Brew, K., The complete amino acid sequence of human serum transferrin. Proc. natl Acad. Sci. USA 79 (1982) 2504-2508.
- 20 Mazurier, J., Léger, D., Tordera, V., Montreuil, J., and Spik, G., Comparative study of the iron-binding properties of transferrins. Differences in the involvement of histidine residues as revealed by carbethoxylation. Eur. J. Biochem. 119 (1981) 537-543.
- 21 Metz-Boutigue, M.H., Jollès, J., Mazurier, J., Spik, G., Montreuil, J., and Jollès, P., Structural studies concerning human lactotransferrin: its relatedness with human serum transferrin and evidence for internal homology. Biochimie 60 (1978) 557-561.
- Metz-Boutigue, M.H., Jollès, J., Mazurier, J., Spik, G., Montreuil, J., and Jollès, P., Structural relatedness between human lactotransferrin and human ceruloplasmin. FEBS Lett. 132 (1981) 239-242.

- 23 Metz-Boutigue, M.H., Jollès, J., Mazurier, J., Spik, G., Montreuil, J., and Jollès, P., An 88 amino acid long C-terminal sequence of human lactotransferrin. FEBS Lett. 142 (1982) 107-110.
- 24 Metz-Boutigue, M. H., Mazurier, J., Jollès, J., Spik, G., Montreuil, J., and Jollès, P., The present state of the human lactotransferrin sequence. Study and alignment of the cyanogen bromide fragments and characterization of N- and C-terminal domains. Biochim. biophys. Acta 670 (1981) 243-254.
- 25 Montreuil, J., and Spik, G., Comparative studies of carbohydrate and protein moieties of human serotransferrin and lactotransferrin, in: Proteins of iron storage and transport in biochemistry and medicine, pp.27-38. Ed. R.R. Crichton. Elsevier Biomedical, Amsterdam-New York 1975.
- Neuberger, A., and Marshall, R.D., Aspects of the structure of glycoproteins, in: Carbohydrates and their roles, pp. 115-132. Eds H.W. Schultze, R.F. Cain, and R.W. Wrolstad. Avi, Westport, Conn., USA, 1969.
- 27 Rogers, T. B., Børresen, T., and Feeney, R. E., Chemical modification of the arginines in transferrins. Biochemistry 17 (1978) 1105–1109.
- 28 Ronin, C., Bouchilloux, S., Granier, C., and Van Rietschoten, J., Enzymatic N-glycosylation of synthetic Asn-X-Thr containing peptides. FEBS Lett. 96 (1978) 179-182.
- Schlabach, M.R., and Bates, G.W., The synergistic binding of anions and Fe³⁺ by transferrin. Implications for the interlocking sites hypothesis. J. biol. Chem. 250 (1975) 2182-2188.
 Tan, A.T., and Woodworth, R.C., Differences in absorption
- 30 Tan, A.T., and Woodworth, R.C., Differences in absorption and emission properties of conalbumin and metal saturated conalbumin. J. Polymer Sci. Part C, (1970) 599-606.
- 31 Warner, R. C., and Weber, I., The metal-combining properties of conalbumin. J. Am. chem. Soc. 75 (1953) 5094–5101.
- Williams, J., The formation of iron-binding fragments of hen ovotransferrin by limited proteolysis. Biochem. J. 141 (1974) 745-752.
- 33 Williams, J., The identification of protected tyrosine residues in iron-ovotransferrin. Biochem. J. 201 (1982) 647-651.
- 34 Williams, J., Elleman, T.C., Kingston, I.B., Wilkins, A.G., and Kuhn, K.A., The primary structure of hen ovotransferrin. Eur. J. Biochem. 122 (1982) 297-303.

0014-4754/83/020135-07\$1.50 + 0.20/0 © Birkhäuser Verlag Basel, 1983

Short Communications

Further caulerpenyne-like esters from the green alga Caulerpa prolifera¹

L. De Napoli, S. Magno, L. Mayol and E. Novellino

Istituto di Chimica Biorganica dell'Università di Napoli, Via L. Rodinò 22, I-80138 Napoli (Italy), June 6, 1982

Summary. From a further investigation of the extractive of the green marine seaweed Caulerpa prolifera, we isolated III, which, on the basis of chemical and physico-chemical data, proved to be a dihydroderivative of caulerpenyne with an acetoxy group substituted by fatty acid residues.

Two previous reports from this laboratory^{2,3} describe the isolation from *Caulerpa prolifera*, a green marine seaweed widely distributed in Mediterranean waters, of a linear sesquiterpenoid, caulerpenyne (I), and of furocaulerpin (II), biogenetically related to (I).

Structurally related sesquiterpenoids and diterpenoids with antimicrobial and antifeedant activities^{4,5} were also found in other species of Chlorophyceae belonging to the same order (Siphonales), and this could have a chemotaxonomic significance. The biological properties of this class of natural compounds prompted us to investigate minor constituents of *C. prolifera* and in this paper we describe the isolation and structure elucidation of further caulerpenynelike esters from this alga.